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Last Class We Covered 

• C++ Functions 
– Parts of a function: 

• Prototype 

• Definition 

• Call 

• Arrays 

– Declaration 

– Initialization 

• Passing arrays to function 
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Any Questions from Last Time? 
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Note Taker Still Needed 

A peer note taker is still needed for this class. A peer note taker 
is a volunteer student who provides a copy of his or her notes for 
each class session to another member of the class who has been 
deemed eligible for this service based on a disability. Peer note 
takers will be paid a $200 stipend for their service. Peer note 
taking is not a part time job but rather a volunteer service for 
which enrolled students can earn a stipend for sharing the notes 
they are already taking for themselves. 

 

If you are interested in serving in this important role, please fill 
out a note taker application on the Student Support Services 
website or in person in the SSS office in Math/Psychology 213. 
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Today’s Objectives 

• To review functions and how they work 

 

• To begin to understand pointers 

– Pointers are a complicated and complex concept 

– You may not immediately “get it” – that’s fine! 
 

• To learn how pointers can be used in functions 

– Passing in entire arrays 

– “Returning” more than one value 
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Functions and Arguments 
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Review of Functions 

• Here is a simple function that adds one to an 
integer and returns the new value 

 

– Definition: 

int AddOne (int  num) { 

   return num++; 

} 

– Call: 

int enrolled = 99; 

enrolled = AddOne(enrolled); 
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Function Arguments 

• What is happening “behind the scenes”? 
 

• When the AddOne() function is called, the 
value of the variable is passed in as an argument 

– The value is saved in AddOne’s local variable num 
 

• Changes made to x do not affect anything 
outside of the function AddOne() 

– This is called the scope of the variable 
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Scope 

• Scope is the “visibility” of variables 

– Which parts of your program can “see” a variable 
 

• Every function has its own scope: 

– The main() function has a set of variables 

– So does the AddOne() function 
 

• They can’t “see” each other’s variables 

– Which is why we must pass arguments  
and return values between functions 
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Addresses 

• Every variable in a program is stored 
somewhere in the computer’s memory 

– This location is called the address 

– All variables have a unique address 
 

• Addresses are normally expressed in hex: 
– 0xFF00 

– 0x70BF 

– 0x659B 
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Array Addresses 

• An array also has an address 

– The location of the first element of the array 
 

char terry[6] = "hello"; 

 

 

 

 

• We’ll discuss arrays more later today 

11 



www.umbc.edu 

Function Scope 

• What happens when AddOne() is called? 

int age = 20; 

age = AddOne(age); 
 

• The value of age is passed in, and stored in 
another variable called num 

– What is the scope of each of these variables? 

–  age is in the scope of main() 

–  num is in the scope of AddOne() 
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• The blue box represents scope 

• The “house” shape is a variable’s  
name, address, and value 

main() 

Function Calls 

13 
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• When main() calls AddOne() 

– The value is passed in, and stored in num 

 

AddOne() main() 

Function Calls 
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• When the AddOne() function changes num, 
what happens to the age variable? 

– Nothing! 

 

 
AddOne() main() 

Function Calls 
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• How do we update the value of age? 

– By returning the new value and assigning it to age 

AddOne() main() 

Function Calls 
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• What happens when the function returns? 

– The function is over 

– AddOne() and num are “out of scope” 

 
AddOne() main() 

Function Calls 
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Pointer Introduction 
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Pointers 

• A pointer is a variable whose value is an 
address to somewhere in memory 

 

cout << "x   is " << x << endl; 

cout << "ptr is " << ptr << endl; 

 

• This will print out something like: 
x   is 37 

ptr is 0x7ffedcaba5c4 
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Pointers 

• Pointers are incredibly useful to programmers! 
 

• Allow functions to  

– Modify multiple arguments 

– Use and modify arrays as arguments 

• Programs can be made more efficient 

• Dynamic objects can be used 

– We’ll discuss this later in the semester 
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Creating Pointers 

• A pointer is just like any regular variable 

– It must have a type 

– It must have a name 

– It must contain a value 
 

• To tell the compiler we’re creating a pointer, 
we need to use * in the declaration 

int *myPtr; 
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Pointer Declarations 

• All of the following are valid declarations: 
int *myPtr; 

int* myPtr; 

int * myPtr; 

– Even this is valid (but don’t do this): 

int*myPtr; 
 

• The spacing and location of the star (“*”) 
don’t matter to the compiler 

22 
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Pointer Declarations 

• Since position doesn’t matter, why use this? 

int *myPtr; 
 

• What does this code do? 
int *myPtr,  yourPtr,  ourPtr; 

– It creates one pointer and two integers! 
 

• What does this code do? 

int *myPtr, *yourPtr, *ourPtr; 

– It creates three integers! 
23 
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Pointers and “Regular” Variables 

• As we said earlier, pointers are just variables 

– Instead of storing an int or a float or a char,  
they store an address in memory 

24 
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Assigning Value to a Pointer 

• The value of a pointer is always an ??? 
 

• To get the address of any variable, we use  
an ampersand (“&”) 

 

int  x = 5; 

int *xPtr; 

// xPtr "points to" x 

xPtr = &x; 
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Assigning to a Pointer 

• All of these are valid assignments: 
int  x = 5; 

int *ptr1 = &x; 

int *ptr2; 

ptr2 = &x; 

int *ptr3 = ptr1; 
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Assigning to a Pointer 

• This is not a valid assignment – why? 
int  x = 5; 

char *ptr4 = &x; 
 

• Pointer type must match the type of the variable 
whose address it stores 

• Compiler will give you an error: 
cannot convert ‘int*’ to ‘char*’ in initialization 

 

27 



www.umbc.edu 

• When we assign a value to a pointer, we are 
telling it where in memory to point to 

 

// create both variables 

double val; 

double *ptr; 

// assign values 

val = 5.6; 

ptr = &val; 

 

 

Making Pointers “Point” 
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The Asterisk and the Ampersand 
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Review: The Ampersand 

• The ampersand 

–Returns the address of a variable 

–Must be placed in front of the variable name 
 

int  x = 5; 

int *varPtr = &x; 

int  y = 7; 

varPtr = &y; 
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The Asterisk (or “Star”) 

• The star symbol (“*”) has two purposes when 
working with pointers 

 

• The first purpose is to tell the compiler  
that the variable will store an address 

– In other words, “declaring a pointer” 

 

int *varPtr = &x; 

void fxnName (float *fltPtr); 
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The Asterisk (or “Star”) 

• The second purpose is to dereference a pointer 
 

• Dereferencing a pointer means the compiler 

– Looks at the address stored in the pointer 

– Goes to that address in memory 

– Looks at the value stored at that address 
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Dereferencing 

• What we do at that point depends on why the 
pointer is being dereferenced 

 

• A dereference can be in three “places” 

– On the left hand side of the assignment operator 

– On the right hand side of the assignment operator 

– In an expression without an assignment operator 

• For example, a print statement 
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Dereferencing Examples 

int val = *ptr; 

 
 

 

• Look at the value, but don’t change it 
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Dereferencing Examples 

*ptr = 36; 

 
 

 

• Access the variable and change its value 
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Dereferencing Examples 

cout << "Value stored is " << *ptr; 

 
 

 

• Look at the value, but don’t change it 
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AddTwo() 
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The AddTwo() Function 

• Let’s create a new function that  
adds 2 to two integers 

– So 22 and 98 will become 24 and 100 
 

• Can we do this with a “regular” function? 

– (That is, without using pointers?) 

– No!  Functions can only return one value! 
 

• We must use pointers to change more than 
one value in a single function 
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The AddTwo() Function 

• We want our function to look something like 
this pseudocode: 

 

// take in two ints, return nothing 

void AddTwo( <two integers> ) { 

   // add two to the first int 

   // add two to the second int 

   // keep the values -- but how? 

} 
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Passing Pointers to a Function 

• To tell the compiler we are passing an address 
to a function, we will use int *varPtr 
 

void AddTwo (int *ptr1, int *ptr2) 

 

• Just like int num tells the compiler  
that we are passing in an integer value 
 

int AddOne (int num) 

 

 

 

 

 

40 



www.umbc.edu 

Writing AddTwo() 

• Given that AddOne() looks like this: 

int AddOne (int num) { 

  return num++; 

} 
 

• How do we write the AddTwo function? 
void AddTwo (int *ptr1, int *ptr2) { 

    

    

} 
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AddTwo() 

void AddTwo (int *ptr1, int *ptr2) { 

   /* add two to the value of the  

      integer ptr1 points to */ 

   *ptr1 = *ptr1 + 2; 

   /* add two to the value of the  

      integer ptr2 points to */ 

   *ptr2 = *ptr2 + 2; 

   /* return nothing */ 

} 
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Calling AddTwo() 

• Now that the function is defined, let’s call it 

 

• It takes in the address of two integers 

– Pass it two int pointers: 

 AddTwo(numPtr1, numPtr2); 

– Pass it the addresses of two ints: 

 AddTwo(&num1,   &num2); 

– Pass it a combination: 

 AddTwo(numPtr1, &num2); 
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Literals and Pointers 

• What about the following – does it work? 
 

AddTwo(&15, &3); 

 

• No!  15 and 3 are literals, not variables 

– They are not stored in memory 

– They have no address 

– (They’re homeless!) 
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Announcements 

• The course policy agreement is due today 
 

• Project 1 has been released 

– Found on Professor’s Marron website 

– Due by 9:00 PM on February 23rd 

• Get started on it now! 
 

• Next time: References 

– And a review of pointers 
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