
www.umbc.edu

CMSC202
 Computer Science II for Majors

Lecture 04 –

Pointers

Dr. Katherine Gibson

Based on slides by Chris Marron at UMBC

www.umbc.edu

Last Class We Covered

• C++ Functions
– Parts of a function:

• Prototype

• Definition

• Call

• Arrays

– Declaration

– Initialization

• Passing arrays to function

2

www.umbc.edu

Any Questions from Last Time?

www.umbc.edu

Note Taker Still Needed

A peer note taker is still needed for this class. A peer note taker
is a volunteer student who provides a copy of his or her notes for
each class session to another member of the class who has been
deemed eligible for this service based on a disability. Peer note
takers will be paid a $200 stipend for their service. Peer note
taking is not a part time job but rather a volunteer service for
which enrolled students can earn a stipend for sharing the notes
they are already taking for themselves.

If you are interested in serving in this important role, please fill
out a note taker application on the Student Support Services
website or in person in the SSS office in Math/Psychology 213.

4

www.umbc.edu

Today’s Objectives

• To review functions and how they work

• To begin to understand pointers

– Pointers are a complicated and complex concept

– You may not immediately “get it” – that’s fine!

• To learn how pointers can be used in functions

– Passing in entire arrays

– “Returning” more than one value

5

www.umbc.edu

Functions and Arguments

www.umbc.edu

Review of Functions

• Here is a simple function that adds one to an
integer and returns the new value

– Definition:

int AddOne (int num) {

 return num++;

}

– Call:

int enrolled = 99;

enrolled = AddOne(enrolled);

 7

www.umbc.edu

Function Arguments

• What is happening “behind the scenes”?

• When the AddOne() function is called, the
value of the variable is passed in as an argument

– The value is saved in AddOne’s local variable num

• Changes made to x do not affect anything
outside of the function AddOne()

– This is called the scope of the variable

8

www.umbc.edu

Scope

• Scope is the “visibility” of variables

– Which parts of your program can “see” a variable

• Every function has its own scope:

– The main() function has a set of variables

– So does the AddOne() function

• They can’t “see” each other’s variables

– Which is why we must pass arguments
and return values between functions

 9

www.umbc.edu

Addresses

• Every variable in a program is stored
somewhere in the computer’s memory

– This location is called the address

– All variables have a unique address

• Addresses are normally expressed in hex:
– 0xFF00

– 0x70BF

– 0x659B

10

www.umbc.edu

Array Addresses

• An array also has an address

– The location of the first element of the array

char terry[6] = "hello";

• We’ll discuss arrays more later today

11

www.umbc.edu

Function Scope

• What happens when AddOne() is called?

int age = 20;

age = AddOne(age);

• The value of age is passed in, and stored in
another variable called num

– What is the scope of each of these variables?

– age is in the scope of main()

– num is in the scope of AddOne()

12

www.umbc.edu

• The blue box represents scope

• The “house” shape is a variable’s
name, address, and value

main()

Function Calls

13

0x1000

20

age

www.umbc.edu

• When main() calls AddOne()

– The value is passed in, and stored in num

AddOne() main()

Function Calls

14

0x1000

20

age

0x5286

num

20

www.umbc.edu

• When the AddOne() function changes num,
what happens to the age variable?

– Nothing!

AddOne() main()

Function Calls

15

0x1000

20

age

0x5286

20

num

21

www.umbc.edu

• How do we update the value of age?

– By returning the new value and assigning it to age

AddOne() main()

Function Calls

16

0x1000

20

age

0x5286

21

num

21

www.umbc.edu

• What happens when the function returns?

– The function is over

– AddOne() and num are “out of scope”

AddOne() main()

Function Calls

17

0x1000

21

age

0x5286

21

num
And are

no longer
available

to us!

www.umbc.edu

Pointer Introduction

www.umbc.edu

Pointers

• A pointer is a variable whose value is an
address to somewhere in memory

cout << "x is " << x << endl;

cout << "ptr is " << ptr << endl;

• This will print out something like:
x is 37

ptr is 0x7ffedcaba5c4

19

www.umbc.edu

Pointers

• Pointers are incredibly useful to programmers!

• Allow functions to

– Modify multiple arguments

– Use and modify arrays as arguments

• Programs can be made more efficient

• Dynamic objects can be used

– We’ll discuss this later in the semester

20

www.umbc.edu

Creating Pointers

• A pointer is just like any regular variable

– It must have a type

– It must have a name

– It must contain a value

• To tell the compiler we’re creating a pointer,
we need to use * in the declaration

int *myPtr;

 21

www.umbc.edu

Pointer Declarations

• All of the following are valid declarations:
int *myPtr;

int* myPtr;

int * myPtr;

– Even this is valid (but don’t do this):

int*myPtr;

• The spacing and location of the star (“*”)
don’t matter to the compiler

22

this is the most
common way

www.umbc.edu

Pointer Declarations

• Since position doesn’t matter, why use this?

int *myPtr;

• What does this code do?
int *myPtr, yourPtr, ourPtr;

– It creates one pointer and two integers!

• What does this code do?

int *myPtr, *yourPtr, *ourPtr;

– It creates three integers!
23

www.umbc.edu

Pointers and “Regular” Variables

• As we said earlier, pointers are just variables

– Instead of storing an int or a float or a char,
they store an address in memory

24

“regular” variable

0x5286

20

num

value

address 0x560B

0xFF8A

ptr

value

address

pointer variable

(where it
points in
memory)

(where it
lives in
memory)

www.umbc.edu

Assigning Value to a Pointer

• The value of a pointer is always an ???

• To get the address of any variable, we use
an ampersand (“&”)

int x = 5;

int *xPtr;

// xPtr "points to" x

xPtr = &x;

25

address

www.umbc.edu

Assigning to a Pointer

• All of these are valid assignments:
int x = 5;

int *ptr1 = &x;

int *ptr2;

ptr2 = &x;

int *ptr3 = ptr1;

26

www.umbc.edu

Assigning to a Pointer

• This is not a valid assignment – why?
int x = 5;

char *ptr4 = &x;

• Pointer type must match the type of the variable
whose address it stores

• Compiler will give you an error:
cannot convert ‘int*’ to ‘char*’ in initialization

27

www.umbc.edu

• When we assign a value to a pointer, we are
telling it where in memory to point to

// create both variables

double val;

double *ptr;

// assign values

val = 5.6;

ptr = &val;

Making Pointers “Point”

28

0xBB08

garbage

val

0x564F

garbage

ptr

5.6

0xBB08

www.umbc.edu

The Asterisk and the Ampersand

www.umbc.edu

Review: The Ampersand

• The ampersand

–Returns the address of a variable

–Must be placed in front of the variable name

int x = 5;

int *varPtr = &x;

int y = 7;

varPtr = &y;

30

www.umbc.edu

The Asterisk (or “Star”)

• The star symbol (“*”) has two purposes when
working with pointers

• The first purpose is to tell the compiler
that the variable will store an address

– In other words, “declaring a pointer”

int *varPtr = &x;

void fxnName (float *fltPtr);

31

www.umbc.edu

The Asterisk (or “Star”)

• The second purpose is to dereference a pointer

• Dereferencing a pointer means the compiler

– Looks at the address stored in the pointer

– Goes to that address in memory

– Looks at the value stored at that address

32

0xBB08

5.6

val

0x564F

0xBB08

ptr

value

address

value

address

www.umbc.edu

Dereferencing

• What we do at that point depends on why the
pointer is being dereferenced

• A dereference can be in three “places”

– On the left hand side of the assignment operator

– On the right hand side of the assignment operator

– In an expression without an assignment operator

• For example, a print statement

33

www.umbc.edu

Dereferencing Examples

int val = *ptr;

• Look at the value, but don’t change it

34

on the right hand side of
the assignment operator

0xBB08

17

val

0x564F

0xBB08

ptr

value

address

value

address

www.umbc.edu

Dereferencing Examples

*ptr = 36;

• Access the variable and change its value

35

on the left hand side of
the assignment operator

0xBB08

17

val

0x564F

0xBB08

ptr

value

address

value

address

36

www.umbc.edu

Dereferencing Examples

cout << "Value stored is " << *ptr;

• Look at the value, but don’t change it

36

in an expression without
an assignment operator

0xBB08

36

val

0x564F

0xBB08

ptr

value

address

value

address

www.umbc.edu

AddTwo()

www.umbc.edu

The AddTwo() Function

• Let’s create a new function that
adds 2 to two integers

– So 22 and 98 will become 24 and 100

• Can we do this with a “regular” function?

– (That is, without using pointers?)

– No! Functions can only return one value!

• We must use pointers to change more than
one value in a single function

38

www.umbc.edu

The AddTwo() Function

• We want our function to look something like
this pseudocode:

// take in two ints, return nothing

void AddTwo(<two integers>) {

 // add two to the first int

 // add two to the second int

 // keep the values -- but how?

}

39

www.umbc.edu

Passing Pointers to a Function

• To tell the compiler we are passing an address
to a function, we will use int *varPtr

void AddTwo (int *ptr1, int *ptr2)

• Just like int num tells the compiler
that we are passing in an integer value

int AddOne (int num)

40

www.umbc.edu

Writing AddTwo()

• Given that AddOne() looks like this:

int AddOne (int num) {

 return num++;

}

• How do we write the AddTwo function?
void AddTwo (int *ptr1, int *ptr2) {

}

41

www.umbc.edu

AddTwo()

void AddTwo (int *ptr1, int *ptr2) {

 /* add two to the value of the

 integer ptr1 points to */

 *ptr1 = *ptr1 + 2;

 /* add two to the value of the

 integer ptr2 points to */

 *ptr2 = *ptr2 + 2;

 /* return nothing */

}

42

www.umbc.edu

Calling AddTwo()

• Now that the function is defined, let’s call it

• It takes in the address of two integers

– Pass it two int pointers:

 AddTwo(numPtr1, numPtr2);

– Pass it the addresses of two ints:

 AddTwo(&num1, &num2);

– Pass it a combination:

 AddTwo(numPtr1, &num2);

 43

www.umbc.edu

Literals and Pointers

• What about the following – does it work?

AddTwo(&15, &3);

• No! 15 and 3 are literals, not variables

– They are not stored in memory

– They have no address

– (They’re homeless!)

44

www.umbc.edu

Announcements

• The course policy agreement is due today

• Project 1 has been released

– Found on Professor’s Marron website

– Due by 9:00 PM on February 23rd

• Get started on it now!

• Next time: References

– And a review of pointers

45

